

Math 451: Introduction to General Topology

Lecture 9

Before we prove the existence of a completion, we need to discuss pseudo-metric spaces.

Def. A **pseudo-metric** on a set X is a function $d: X \times X \rightarrow [0, \infty)$ satisfying:

(i) $d(x, x) = 0 \quad \forall x \in X$.

(ii) $d(x, y) = d(y, x) \quad \forall x, y \in X$.

(iii) **Triangle inequality:** $d(x, z) \leq d(x, y) + d(y, z) \quad \forall x, y, z \in X$.

Call (X, d) a **pseudo-metric space**.

Given a pseudo-metric space, define an equivalence relation \sim on X by

$$x \sim y \iff d(x, y) = 0.$$

Then we can turn the quotient $\tilde{X} := X/\sim$ into a metric space as follows. Let $[x]$ denote the equivalence class of $x \in X$, so $[x] = \{y \in X : d(x, y) = 0\}$. Then define $\tilde{d}: \tilde{X} \times \tilde{X} \rightarrow [0, \infty)$ by $\tilde{d}([x], [y]) := d(x, y)$. This is well-defined, i.e. if $x \sim x'$ and $y \sim y'$ then $d(x, y) = d(x', y')$, which holds by A-inequality:

$$d(x, y) \leq d(x, x') + d(x', y') + d(y', y) = d(x', y')$$

and \geq is by symmetry. The triangle inequality is easy to verify, so \tilde{d} is a metric on \tilde{X} . Then the quotient map $\pi: X \rightarrow \tilde{X}$ is an "isometry": for all $x, y \in X$,

$$\tilde{d}(\pi(x), \pi(y)) = d(x, y).$$

Proof of the existence of completion. Let (X, d) be a metric space. Let $\text{Cauchy}(X) :=$ all Cauchy sequences in X , in particular, $\text{Cauchy}(X) \subseteq X^{\mathbb{N}}$. We will make this a pseudo-metric space whose quotient metric space will be our completion (\tilde{X}, \tilde{d}) .

Define $\mathcal{D} = \text{Cauchy}(X)^2 \rightarrow [0, \infty)$ by

$$\mathcal{D}((x_n), (y_n)) := \lim_{n \rightarrow \infty} d(x_n, y_n).$$

Claim 1. The sequence $(d(x_n, y_n)) \subseteq \mathbb{R}$ is Cauchy and therefore has a limit in \mathbb{R} .

Proof. For each $\varepsilon > 0$ fix $N \in \mathbb{N}$ s.t. $\forall n, m \geq N$, $d(x_n, x_m) < \varepsilon/2$ and $d(y_n, y_m) < \varepsilon/2$. Then

$$d(x_n, y_n) \leq d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n) \leq \frac{\varepsilon}{2} + d(x_m, y_m) + \frac{\varepsilon}{2} = d(x_m, y_m) + \varepsilon, \text{ and}$$

$$d(x_m, y_m) \leq d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m) \leq \frac{\varepsilon}{2} + d(x_n, y_n) + \frac{\varepsilon}{2} = d(x_n, y_n) + \varepsilon, \text{ so}$$

$$-\varepsilon \leq d(x_n, y_n) - d(x_m, y_m) \leq \varepsilon,$$

i.e., $|d(x_n, y_n) - d(x_m, y_m)| \leq \varepsilon$, so indeed $(d(x_n, y_n)) \subseteq \mathbb{R}$ is Cauchy. \square

It is quick to verify that the triangle inequality holds for d , making it a pseudo-metric on $\text{Cauchy}(X)$. Let (\hat{X}, \hat{d}) be the quotient metric space. We note that (X, d) isometrically injects into \hat{X} by $X \hookrightarrow \hat{X}$; indeed, for any $x, y \in X$,

$$x \mapsto [(x, x, x, \dots)]$$

$\hat{d}([(x, x, \dots)], [(y, y, \dots)]) := d((x, x, \dots), (y, y, \dots)) = \lim_{n \rightarrow \infty} d(x_n, y_n) = d(x, y)$. It remains to show that (\hat{X}, \hat{d}) is complete and we do not need to verify that $\overline{\hat{X}}^{\hat{d}} = \hat{X}$ because if not, then the completion of X would be $\overline{\hat{X}}^{\hat{d}}$. (Although it is true that $\overline{\hat{X}}^{\hat{d}} = \hat{X}$. HW)

Claim 2. For any Cauchy $(x_n) \subseteq X$ and any subsequence (x_{n_k}) , $(x_n) \sim (x_{n_k})$, i.e.

$$d((x_k), (x_{n_k})) = \lim_{k \rightarrow \infty} d(x_k, x_{n_k}) = 0$$

Proof. For any $\varepsilon > 0$ let N be such that $\text{diam}\{x_N, x_{N+1}, \dots\} < \varepsilon$, then $\forall k \geq N$, we have $n_k \geq N$ and $d(x_k, x_{n_k}) \leq \text{diam}\{x_N, x_{N+1}, \dots\} < \varepsilon$. \square

This says that when given $[(x_n)] \in \hat{X}$, we can move to a faster subsequence (x_{n_k}) within the same equivalence class $[(x_n)]$.

To prove that (\hat{X}, \hat{d}) is complete, take a Cauchy sequence $(\hat{x}^k)_{k \in \mathbb{N}} \subseteq \hat{X}$.

By moving to a fast subsequence of (\hat{x}^k) and then choosing a fast representable $(x_n^k)_{n \in \mathbb{N}}$ for each $k \in \mathbb{N}$ and $n \geq k$, we may assume

$$(i) \quad d(x_n^k, x_m^k) < \frac{1}{k};$$

$$(ii) \quad d(x_n^k, x_n^m) < \frac{1}{k}.$$

$$\hat{x}^1: x_1^1 x_2^1 x_3^1 x_4^1 x_5^1 \dots$$

$$\hat{x}^2: x_1^2 x_2^2 x_3^2 x_4^2 x_5^2 \dots$$

$$\hat{x}^3: x_1^3 x_2^3 x_3^3 x_4^3 x_5^3 \dots$$

$$\hat{x}^4: x_1^4 x_2^4 x_3^4 x_4^4 x_5^4 \dots$$

It follows using (i) and (ii) that the diagonal sequence (x_n^u) is Cauchy, so $\tilde{x} := [(x_n^u)] \in \tilde{X}$. One then checks, again using (i) and (ii) that for any $n \geq k$, $d(x_n^k, x_n^u) \leq \frac{1}{k}$, so $\lim_{n \rightarrow \infty} d(x_n^k, x_n^u) \leq \frac{1}{k}$, so $d((x_n^k), (x_n^u)) \leq \frac{1}{k}$, hence $d(\tilde{x}_k, \tilde{x}) \leq \frac{1}{k}$. We leave these verifications as exercise. □

We will give a much cleaner, although less intuitive, alternative proof of the existence of a completion by Kaplanski shortly.

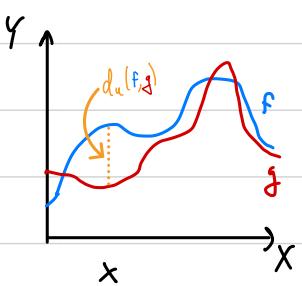
Remark. For a metric space X and a subset $Y \subseteq X$, we say that Y is dense in X if Y meets every nonempty open set U (i.e. $\exists y \in Y$ s.t. $y \in U$, like $k \in B$). This is equivalent (H/W) to $\overline{Y} = X$. Thus, a completion \tilde{X} of X is a metric space with $X \subseteq \tilde{X}$ where X is dense in \tilde{X} and \tilde{X} is complete.

To give Kaplanski's proof, we need the following metric space.

Space of functions with uniform metric.

For a set X and a metric space Y , let $B(X, Y)$ denote the set of bounded functions $X \rightarrow Y$, where a function $f: X \rightarrow Y$ is called bounded if $f(x) \in$ some ball in Y . In this case, we can define the uniform metric between $f, g \in B(X, Y)$

$$d_u(f, g) := \sup_{x \in X} d_Y(f(x), g(x)).$$



This is clearly a metric; indeed, $d_u(f, g) = 0$ implies $f(x) = g(x) \forall x \in X$, hence $f = g$. Also,

$$\begin{aligned} d_u(f, h) &= \sup_{x \in X} d_Y(f(x), h(x)) \leq \sup_{x \in X} (d_Y(f(x), g(x)) + d_Y(g(x), h(x))) \\ &\leq \sup_{x_0 \in X} d_Y(f(x_0), g(x_0)) + \sup_{x_1 \in X} d_Y(g(x_1), h(x_1)) = d_u(f, g) + d_u(g, h). \end{aligned}$$

Theorem. If (Y, d_Y) is a complete metric space then $B(X, Y)$ is complete with the uniform metric d_u .

Proof. Let (f_n) be a d_u -Cauchy sequence. Note that for each $x \in X$, $(f_n(x))_{n \in \mathbb{N}} \subseteq Y$ is d_Y -Cauchy because $d_Y(f_n(x), f_m(x)) \leq d_u(f_n, f_m) \rightarrow 0$ as $n, m \rightarrow \infty$.

By the completeness of Y , the limit of $(f_n(x))$ exists and we put $f(x) := \lim_{n \rightarrow \infty} f_n(x)$. We need to show that f is bdd and $f_n \rightarrow_{d_u} f$ as $n \rightarrow \infty$.

Claim 1. f is bdd.

Proof. By Cauchy property, $\exists N \in \mathbb{N} \forall n, k \geq N d_u(f_n, f_k) \leq 1$. But $\forall n, f_n(x) \subseteq B_{r_n}(y_n)$ for some $y_n \in Y$, so setting $r := \max \{ d(y_0, y_n) + r_n : n \leq N \} + 1$, we get that for all $n \in \mathbb{N}$, $f_n(x) \subseteq B_r(y_0)$. \square

Claim 2. (f_n) converges to f in the uniform metric (i.e. converges uniformly).

Proof. Fix an arbitrary $\varepsilon > 0$. By the Cauchyness of (f_n) in the uniform distance, $\exists N \in \mathbb{N}$ s.t. $\forall n, k \geq N$, $(*) d_u(f_n, f_k) < \varepsilon/2$. Now we fix $n \geq N$, aiming to show that $d_u(f, f_n) \leq \varepsilon$. To do so, we show that for each $x \in X$, $d_Y(f(x), f_n(x)) \leq \varepsilon$, so fix $x \in X$. Because $\lim_{k \rightarrow \infty} f_k(x) = f(x)$, there is $k \geq N$ such that $d_Y(f(x), f_k(x)) \leq \varepsilon/2$ $(**)$. Thus, $d_Y(f(x), f_n(x)) \leq d(f(x), f_k(x)) + d_Y(f_k(x), f_n(x)) \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$. Thus, $d_u(f, f_n) = \sup_{x \in X} d_Y(f(x), f_n(x)) \leq \varepsilon$, so $f_n \rightarrow_{d_u} f$ as $n \rightarrow \infty$. $(*) \quad (**)$ \square

QED